MIT engineers repurpose wasp venom as an antibiotic drug

9 Dec 2018

Altered peptides from a South American wasp’s venom can kill bacteria but are nontoxic to human cells.

The venom of insects such as wasps and bees is full of compounds that can kill bacteria. Unfortunately, many of these compounds are also toxic for humans, making it impossible to use them as antibiotic drugs.

MIT engineers repurpose wasp venom as an antibiotic drug

After performing a systematic study of the antimicrobial properties of a toxin normally found in a South American wasp, researchers at MIT have now created variants of the peptide that are potent against bacteria but nontoxic to human cells.

In a study of mice, the researchers found that their strongest peptide could completely eliminate Pseudomonas aeruginosa, a strain of bacteria that causes respiratory and other infections and is resistant to most antibiotics.

“We’ve repurposed a toxic molecule into one that is a viable molecule to treat infections,” says Cesar de la Fuente-Nunez, an MIT postdoc. “By systematically analyzing the structure and function of these peptides, we’ve been able to tune their properties and activity.”

De la Fuente-Nunez is one of the senior authors of the paper, which appears in the Dec. 7 issue of the journal Nature Communications Biology. Timothy Lu, an MIT associate professor of electrical engineering and computer science and of biological engineering, and Vani Oliveira, an associate professor at the Federal University of ABC in Brazil, are also senior authors. The paper’s lead author is Marcelo Der Torossian Torres, a former visiting student at MIT.

Venomous variants

As part of their immune defenses, many organisms, including humans, produce peptides that can kill bacteria. To help fight the emergence of antibiotic-resistant bacteria, many scientists have been trying to adapt these peptides as potential new drugs.

The peptide that de la Fuente-Nunez and his colleagues focused on in this study was isolated from a wasp known as Polybia paulista. This peptide is small enough — only 12 amino acids — that the researchers believed it would be feasible to create some variants of the peptide and test them to see if they might become more potent against microbes and less harmful to humans.

“It’s a small enough peptide that you can try to mutate as many amino acid residues as possible to try to figure out how each building block is contributing to antimicrobial activity and toxicity,” de la Fuente-Nunez says.

Like many other antimicrobial peptides, this venom-derived peptide is believed to kill microbes by disrupting bacterial cell membranes. The peptide has an alpha helical structure, which is known to interact strongly with cell membranes.

In the first phase of their study, the researchers created a few dozen variants of the original peptide and then measured how those changes affected the peptides’ helical structure and their hydrophobicity, which also helps to determine how well the peptides interact with membranes. They then tested these peptides against seven strains of bacteria and two of fungus, making it possible to correlate their structure and physicochemical properties with their antimicrobial potency.

Based on the structure-function relationships they identified, the researchers then designed another few dozen peptides for further testing. They were able to identify optimal percentages of hydrophobic amino acids and positively charged amino acids, and they also identified a cluster of amino acids where any changes would impair the overall function of the molecule.

Fighting infection

To measure the peptides’ toxicity, the researchers exposed them to human embryonic kidney cells grown in a lab dish. They selected the most promising compounds to test in mice infected with Pseudomonas aeruginosa, a common source of respiratory and urinary tract infections, and found that several of the peptides could reduce the infection. One of them, given at a high dose, could eliminate it completely.

“After 4 days, that compound can completely clear the infection, and that was quite surprising and exciting because we don’t typically see that with other experimental antimicrobials or other antibiotics that we’ve tested in the past with this particular mouse model,” de la Fuente-Nunez says.

The researchers have begun creating additional variants that they hope will be able to clear infections at lower doses. De la Fuente-Nunez also plans to apply this approach to other types of naturally occurring antimicrobial peptides when he joins the faculty of the University of Pennsylvania next year.

“I do think some of the principles that we’ve learned here can be applicable to other similar peptides that are derived from nature,” he says. “Things like helicity and hydrophobicity are very important for a lot of these molecules, and some of the rules that we’ve learned here can definitely be extrapolated.”

The research was funded, in part, by the Ramon Areces Foundation and the Defense Threat Reduction Agency.

Read More

Related categories

Related news

Inaugural Bio Integrates conference highlights industry's inefficiency in developing products

Inaugural Bio Integrates conference highlights industry's inefficiency in developing products

18 Jun 2019

Industry leaders give voice to issues and trends shaping the biotech sector, including the importance of collaboration.

Read more 
Clinical supply milestone reached for triple-negative breast cancer treatment

Clinical supply milestone reached for triple-negative breast cancer treatment

12 Jun 2019

PhoenixMD and WuXi STA have produced a multikilogram drug supply for PMD-026 under GMP manufacturing practices.

Read more 
Trial finds vitamin D does not prevent type 2 diabetes in people at high risk

Trial finds vitamin D does not prevent type 2 diabetes in people at high risk

11 Jun 2019

No meaningful difference between the two study groups regardless of age, sex, race or ethnicity.

Read more 
Partnership seeks breath biomarkers for the early detection of malignant mesothelioma

Partnership seeks breath biomarkers for the early detection of malignant mesothelioma

6 Jun 2019

Owlstone Medical and IAHFIAW to use Breath Biopsy to examine the chemicals found on the breath of individuals with documented historical exposure to asbestos and radiologically and histologically confirmed mesothelioma.

Read more 
Lilly gets its hands on non-opioid pain asset

Lilly gets its hands on non-opioid pain asset

4 Jun 2019

Early-phase molecule from Centrexion to be developed further as a potential non-opioid treatment option for multiple pain conditions.

Read more 
Updated clinical trial simulation software saves time and money

Updated clinical trial simulation software saves time and money

3 Jun 2019

One customer saves $25m and 3 years' development time in their clinical development strategy.

Read more 
Merck bolsters oncology pipeline with acquisition

Merck bolsters oncology pipeline with acquisition

22 May 2019

Acquisition includes novel late-stage renal cell carcinoma candidate, PT2977.

Read more 
Follicum files patent application for new topical formulation for hair loss

Follicum files patent application for new topical formulation for hair loss

30 Apr 2019

Using easy-to-apply cream instead of direct scalp injection would extend patent protection by 8 years.

Read more 
Hovione Technology acquires global rights to new pulmonary inhaler device

Hovione Technology acquires global rights to new pulmonary inhaler device

15 Apr 2019

The Papillon DPI is a single-part, blister-based, reusable inhaler, suitable for both chronic and acute treatments.

Read more 
Isotype-specific secondary antibodies for improved signal detection

Isotype-specific secondary antibodies for improved signal detection

10 Apr 2019

Offers an alternative to cross-adsorbed secondary antibodies when absolute specificity is required.

Read more