NIH Scientists Map Genetic Changes that Drive Tumors in a Common Pediatric Soft-Tissue Cancer
Scientists have mapped the genetic changes that drive tumours in rhabdomyosarcoma, a pediatric soft-tissue cancer, and found that the disease is characterized by two distinct genotypes. The genetic alterations identified in this malignancy could be useful in developing targeted diagnostic tools and treatments for children with the disease. The study, by researchers at the National Cancer Institute (NCI), part of the National Institutes of Health, and their colleagues, appeared in the 23 January 2014, issue of the journal Cancer Discovery.
Rhabdomyosarcoma is the most common soft-tissue sarcoma in children and affects muscles in any part of the body. Among patients diagnosed with non-metastasized disease, about 80% survive at least 5 years, although they may experience substantial treatment-related toxic effects. However, for those with metastatic disease, the 5-year survival rate is about 30% even with aggressive treatment.
NCI’s effort to characterize the genetic events that contribute to rhabdomyosarcoma was led by Javed Khan, MD, head of the Oncogenomics Section, Pediatric Oncology Branch, Center for Cancer Research, and Jack Shern, MD, a clinical fellow.
“These studies are very difficult to do because tissue acquisition and validation is so complex,” said Khan. “It must be noted therefore that this work would not have been possible without our brave pediatric patients and their families. In the face of their life-threatening disease, they offered their tumours for study knowing that they would not personally benefit from this work but in the hope that investigators might learn lessons that would help children diagnosed with rhabdomyosarcoma in the future.”
Khan’s team used a number of advanced sequencing techniques to investigate the genetic changes in a total of 147 rhabdomyosarcoma tumours which were paired with normal tissue samples. These sequencing tools allowed them to unravel the complex molecular events that occur in tumour cells, compare normal DNA with tumour DNA, identify mutations in genes, and determine exactly which genes are turned on (activated) or turned off (deactivated), leading to progression of this cancer.
Through their studies, they identified two distinct genotypes of rhabdomyosarcoma tumors. The first genotype is characterized by either a PAX3 or PAX7 fusion gene; a fusion gene is a gene made by joining parts of two different genes. The second genotype lacks a PAX fusion gene but harbors mutations in key signaling pathways; a signaling pathway is a group of proteins that work together to regulate one or more cell functions, such as cell division or cell death.
The researchers also found that, as in other types of pediatric cancers, the overall number of alterations in tumour DNA that develop over the children’s lifespan (known as somatic mutations) were relatively low compared with DNA alterations that children were born with. The somatic mutation rate was especially low in tumours with a PAX fusion gene. Nevertheless, they did find relatively frequent somatic mutations in several genes, including NRAS, KRAS, HRAS, FGFR4, PIK3CA, CTNNB, all of which had previously been found to be mutated in rhabdomyosarcoma, as well as the genes FBXW7 and BCOR, which had not been previously associated with this disease.
Moreover, they identified mutations in additional genes in the RAS/PIK3CAsignaling pathway. Overall, alterations in this pathway were found in 93% of rhabdomyosarcoma tumors. Intriguingly, many of the genes mutated in the tumors that did not have a PAX fusion gene were found to be turned on or off by proteins produced by PAX fusion genes.
“Although more work is needed, our study may provide researchers with the rationale to develop genomics-guided therapeutic interventions with greater efficacy and fewer side effects than the treatments options currently available for pediatric patients with rhabdomyosarcoma,” Shern said.
Building on this research, Khan and his team will design and test interventions that target the genetic drivers identified in this genomic analysis of rhabdomyosarcoma.
Related News
-
News CPHI Podcast Series: the power of digital marketing in pharma
Digital marketing is a valuable tool for many industries, and the pharmaceutical and healthcare industry is no exception. The CPHI Podcast Series covers how marketing can be used by companies to increase their engagement and overcome challenges.&n... -
News Novel approach to creating sustainable packaging from rice husks
Researchers have created a new approach to the designing of eco-friendly nanofibres extracted from rice husks, addressing the critical need for sustainable packaging materials in food and biopharmaceutical products. -
News BioNTech to begin mRNA vaccine manufacturing in Rwanda by 2025
German biotechnology company BioNTech has stated their intentions to begin production at their mRNA vaccine factory in Rwanda by 2025, which will mark the first foreign mRNA vaccine manufacturing site on the continent of Africa. -
News Identifying Alzheimer’s Disease biomarker proteins with whole blood tests
A University of Manchester spin-out pharmaceutical company, PharmaKure, has reported successful study results for the quantification of Alzheimer’s Disease biomarker proteins with a whole blood test. -
News Bill & Melinda Gates Foundation to boost mRNA vaccine initiatives in Africa with USD $40m
To address vaccine inequality and accessibility issues, the Bill & Melinda Gates Foundation aims to deliver USD $40m to various biotech companies and vaccine manufacturers in support of mRNA vaccine development. -
News CPHI Podcast Series: Exploring neurological frontiers in Alzheimer's and beyond
The next episode of the CPHI Podcast Series delves into the science and background behind some recent developments in the field of Alzheimer's disease and neurological disorders. -
News Is patient centricity the future of pharmaceutical manufacturing?
In this interview with Sandra Sánchez y Oldenhage, President of PharmAdvice, she speaks to the importance of considering patients in the manufacturing stages of the pharmaceutical supply chain, and how it can redefine healthcare. -
News CPHI Podcast Series: How to leverage AI for Drug Discovery
Artificial intelligence is the topic of debate in the latest episode from the CPHI Podcast Series, where Digital Editor Lucy Chard speaks with Bill Whitford of DPS Group about the integration of AI in healthcare.
Position your company at the heart of the global Pharma industry with a CPHI Online membership
-
Your products and solutions visible to thousands of visitors within the largest Pharma marketplace
-
Generate high-quality, engaged leads for your business, all year round
-
Promote your business as the industry’s thought-leader by hosting your reports, brochures and videos within your profile
-
Your company’s profile boosted at all participating CPHI events
-
An easy-to-use platform with a detailed dashboard showing your leads and performance