Scientists Fish for New Epilepsy Model and Reel in Potential Drug
According to new research on epilepsy, zebrafish have certainly earned their stripes. Results of a study in Nature Communications suggest that zebrafish carrying a specific mutation may help researchers discover treatments for Dravet syndrome (DS), a severe form of pediatric epilepsy that results in drug-resistant seizures and developmental delays.
Scott C. Baraban, PhD, and his colleagues at the University of California, San Francisco (UCSF), carefully assessed whether the mutated zebrafish could serve as a model for DS, and then developed a new screening method to quickly identify potential treatments for DS using these fish. This study was supported by the National Institute of Neurological Disorders and Stroke (NINDS), part of the National Institutes of Health and builds on pioneering epilepsy zebrafish models first described by the Baraban laboratory in 2005.
Dravet syndrome is commonly caused by a mutation in the Scn1a gene, which encodes for Nav1.1, a specific sodium ion channel found in the brain. Sodium ion channels are critical for communication between brain cells and proper brain functioning.
The researchers found that the zebrafish that were engineered to have the Scn1a mutation that causes DS in humans exhibited some of the same characteristics, such as spontaneous seizures, commonly seen in children with DS. Unprovoked seizure activity in the mutant fish resulted in hyperactivity and whole-body convulsions associated with very fast swimming. These types of behaviors are not seen in normal healthy zebrafish.
“We were also surprised at how similar the mutant zebrafish drug profile was to that of Dravet patients,” said Dr Baraban. “Antiepileptic drugs shown to have some benefits in patients (such as benzodiazepines or stiripentol) also exhibited some antiepileptic activity in these mutants. Conversely, many of the antiepileptic drugs that do not reduce seizures in these patients showed no effect in the mutant zebrafish.”
In this study, the researchers developed a fast and automated drug screen to quickly test the effectiveness of various compounds in mutant zebrafish. The researchers tracked behavior and measured brain activity in the mutant zebrafish to determine if the compounds had an impact on seizures.
“Scn1a mutants seize often, so it is relatively easy to monitor their seizure behavior at baseline and then again after a drug application,” said Dr Baraban. “Using zebrafish placed individually in a 96-part petri dish we can accurately quantify this seizure behavior. In this way, we can test almost 100 fish at one time and quickly determine whether a drug candidate has any effect on these spontaneous seizures.”
In the first such application of this approach, UCSF researchers screened 320 compounds and found that clemizole was most effective in inhibiting seizure activity. Clemizole is approved by the FDA and has a safe toxicology profile. “This finding was completely unexpected. Based on what is currently known about clemizole, we did not predict that it would have antiepileptic effects,” said Dr Baraban.
These findings suggest that Scn1a mutant zebrafish may serve as a good model of DS and that the drug screen may be effective in quickly identifying novel therapies for epilepsy.
Dr Baraban also noted that someday these experiments can be 'personalised,' by looking at mutated zebrafish that use genetic information from individual patients.
This research was funded by the Exceptional, Unconventional Research Enabling Knowledge Acceleration (EUREKA) program at NIH that supports innovative research with the potential for big impact in biomedical science.
“The goal of the EUREKA programme is to provide a means to test high-risk ideas to see if they are worth pursuing further. These kinds of ideas often come from left field and are very creative. Since they are so unique, however, there may not be any existing preliminary data to support the hypothesis or demonstrate feasibility. EUREKA grants provide an opportunity to gather this information,” said Brandy Fureman, PhD, programme director at NINDS.
This particular study was chosen in response to a request by NINDS to help spur novel research on epilepsy. “This research was selected for a EUREKA grant because it proposed a well-designed, inventive model of genetic epilepsy that could accelerate the pace of drug-screening for this devastating form of pediatric epilepsy” said Dr Fureman.
Dr Fureman noted that these findings not only describe a novel model of Dravet syndrome, but the positive results with an unexpected FDA-approved drug may lead to new therapeutic avenues. “There is more work to be done, but I am very pleased to see these initial results. These kinds of new directions are exactly what we hoped to stimulate with the EUREKA programme,” she said.
Related News
-
News CPHI Podcast Series: the power of digital marketing in pharma
Digital marketing is a valuable tool for many industries, and the pharmaceutical and healthcare industry is no exception. The CPHI Podcast Series covers how marketing can be used by companies to increase their engagement and overcome challenges.&n... -
News Novel approach to creating sustainable packaging from rice husks
Researchers have created a new approach to the designing of eco-friendly nanofibres extracted from rice husks, addressing the critical need for sustainable packaging materials in food and biopharmaceutical products. -
News BioNTech to begin mRNA vaccine manufacturing in Rwanda by 2025
German biotechnology company BioNTech has stated their intentions to begin production at their mRNA vaccine factory in Rwanda by 2025, which will mark the first foreign mRNA vaccine manufacturing site on the continent of Africa. -
News Identifying Alzheimer’s Disease biomarker proteins with whole blood tests
A University of Manchester spin-out pharmaceutical company, PharmaKure, has reported successful study results for the quantification of Alzheimer’s Disease biomarker proteins with a whole blood test. -
News Bill & Melinda Gates Foundation to boost mRNA vaccine initiatives in Africa with USD $40m
To address vaccine inequality and accessibility issues, the Bill & Melinda Gates Foundation aims to deliver USD $40m to various biotech companies and vaccine manufacturers in support of mRNA vaccine development. -
News CPHI Podcast Series: Exploring neurological frontiers in Alzheimer's and beyond
The next episode of the CPHI Podcast Series delves into the science and background behind some recent developments in the field of Alzheimer's disease and neurological disorders. -
News Is patient centricity the future of pharmaceutical manufacturing?
In this interview with Sandra Sánchez y Oldenhage, President of PharmAdvice, she speaks to the importance of considering patients in the manufacturing stages of the pharmaceutical supply chain, and how it can redefine healthcare. -
News CPHI Podcast Series: How to leverage AI for Drug Discovery
Artificial intelligence is the topic of debate in the latest episode from the CPHI Podcast Series, where Digital Editor Lucy Chard speaks with Bill Whitford of DPS Group about the integration of AI in healthcare.
Position your company at the heart of the global Pharma industry with a CPHI Online membership
-
Your products and solutions visible to thousands of visitors within the largest Pharma marketplace
-
Generate high-quality, engaged leads for your business, all year round
-
Promote your business as the industry’s thought-leader by hosting your reports, brochures and videos within your profile
-
Your company’s profile boosted at all participating CPHI events
-
An easy-to-use platform with a detailed dashboard showing your leads and performance