Entirely Novel Strategy to Molecular Anticancer Therapy Tricks Malignant Cells
A ground-breaking study spearheaded by Scientific Director Giulio Superti-Furga at the CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences shows that fast-growing cancer cells are sensitive towards imbalances in the metabolism of nucleotides, the building blocks of DNA. This vulnerability can be exploited for a radically novel antitumour therapeutic approach.
Not only did the researchers from Vienna, in a joint effort with colleagues from Oxford and Stockholm, identify the enzyme MTH1 as an Achilles heel of malignant tumour cells, but also, in a wonderful twist of fate, they discovered the chemical mirror image of an existing anticancer drug called crizotinib to be an efficient inhibitor of MTH1 activity. The study was published in advance online by the renowned scientific journal Nature on 2 April 2014.
The importance of MTH1 starts at replication forks, where DNA molecules are duplicated by template-guided serial assembly of nucleotide building blocks. It is crucial that these individual building blocks are intact to prevent DNA damage and defects such as mutations. MTH1 is a nucleotide sanitizing enzyme that removes damaged nucleotides. Unlike in normal cells where this feature is not required because nucleotides are intact, cancer cells suffer from oxidative stress which leads to the damage of nucleotides and thus, MTH1 is indispensable for preserving genome integrity by preventing the incorporation of damaged DNA building blocks. Clearance of those building blocks damaged by oxidation allows cancer cells to divide and proliferate infinitely. Upon disruption of this protective mechanism by an MTH1 inhibitor, oxidized nucleotides are incorporated into newly synthesized DNA. The damaged DNA strands break and the cancer cell dies.
Selectively Toxic Anticancer Agent Identified in Model Study
In the present study, the researchers at CeMM successfully applied a mass spectrometry-based analytical technique (chemical proteomics) to elucidate the mode of action of a small molecule that was found to selectively target cancer cells. When examining an incidentally impure laboratory-grade batch of the known and approved protein kinase inhibitor and anticancer drug crizotinib, the researchers discovered an interesting activity that could not be explained by the known properties of this compound. Further investigations revealed that the impurity was the chemical mirror image (enantiomer) of crizotinib, which is identical to crizotinib but varies slightly in its three-dimensional structure. Strikingly, this stereoisomer was found to be a highly specific inhibitor of the MTH1 enzyme. This entirely unexpected activity distinguishes the so far unexplored enantiomer completely from the clinically used drug and offers hope for a novel therapeutic strategy:
According to this concept, a specific MTH1 inhibitor should be able to exploit the MTH1 dependency present in cancer cells to induce cell death. While the development of new therapeutic drugs is frequently associated with complications and years of optimization experiments, which means that it often takes decades before patients can benefit from the initial discovery, this Viennese study could significantly accelerate the drug development process. Giulio Superti-Furga, principal investigator and leader of the study: “It’s really a rare stroke of luck that we have not only found a previously unknown sore spot of aggressive cancers, but that by chance we simultaneously identified a chemical substance that is a mirror image of one of the best new anticancer agents in the clinic. Double Jackpot!” Kilian Huber, first author of the study adds: “This very high similarity to an already approved and clinically evaluated drug may open the opportunity to quickly test our findings in the clinic for the benefit of the patients.”
“This paper represents a creative and original application of pharmacology, signal transduction biochemistry, and structural biology employed to make inroads into the therapy of cancers that have to date resisted effective treatment,.” commented Robert A. Weinberg, founding member of the Whitehead Institute for Biomedical Research, Professor of Biology at MIT in Cambridge, USA. Professor Weinberg discovered the first human oncogene RAS and the first tumour suppressor gene RB, and in fact, was the first proponent of MTH1 as a potentially novel and attractive target in oncology. This idea is also supported by a study, which was conducted in parallel by Thomas Helleday at the Karolinska Institute in Stockholm and published as an article back-to-back in the same issue of Nature.
www.cemm.oeaw.ac.at
Related News
-
News CPHI Podcast Series: the power of digital marketing in pharma
Digital marketing is a valuable tool for many industries, and the pharmaceutical and healthcare industry is no exception. The CPHI Podcast Series covers how marketing can be used by companies to increase their engagement and overcome challenges.&n... -
News Novel approach to creating sustainable packaging from rice husks
Researchers have created a new approach to the designing of eco-friendly nanofibres extracted from rice husks, addressing the critical need for sustainable packaging materials in food and biopharmaceutical products. -
News BioNTech to begin mRNA vaccine manufacturing in Rwanda by 2025
German biotechnology company BioNTech has stated their intentions to begin production at their mRNA vaccine factory in Rwanda by 2025, which will mark the first foreign mRNA vaccine manufacturing site on the continent of Africa. -
News Identifying Alzheimer’s Disease biomarker proteins with whole blood tests
A University of Manchester spin-out pharmaceutical company, PharmaKure, has reported successful study results for the quantification of Alzheimer’s Disease biomarker proteins with a whole blood test. -
News Bill & Melinda Gates Foundation to boost mRNA vaccine initiatives in Africa with USD $40m
To address vaccine inequality and accessibility issues, the Bill & Melinda Gates Foundation aims to deliver USD $40m to various biotech companies and vaccine manufacturers in support of mRNA vaccine development. -
News CPHI Podcast Series: Exploring neurological frontiers in Alzheimer's and beyond
The next episode of the CPHI Podcast Series delves into the science and background behind some recent developments in the field of Alzheimer's disease and neurological disorders. -
News Is patient centricity the future of pharmaceutical manufacturing?
In this interview with Sandra Sánchez y Oldenhage, President of PharmAdvice, she speaks to the importance of considering patients in the manufacturing stages of the pharmaceutical supply chain, and how it can redefine healthcare. -
News CPHI Podcast Series: How to leverage AI for Drug Discovery
Artificial intelligence is the topic of debate in the latest episode from the CPHI Podcast Series, where Digital Editor Lucy Chard speaks with Bill Whitford of DPS Group about the integration of AI in healthcare.
Position your company at the heart of the global Pharma industry with a CPHI Online membership
-
Your products and solutions visible to thousands of visitors within the largest Pharma marketplace
-
Generate high-quality, engaged leads for your business, all year round
-
Promote your business as the industry’s thought-leader by hosting your reports, brochures and videos within your profile
-
Your company’s profile boosted at all participating CPHI events
-
An easy-to-use platform with a detailed dashboard showing your leads and performance