CPhI Online

- Research & Development

HKBU scientists develop technique to eliminate drug side effects

19 May 2020

The novel method paves the way towards the mass production of affordable therapeutic drugs that are made with recyclable materials.

Scientists from Hong Kong Baptist University (HKBU) have developed a novel technique that can produce pure therapeutic drugs without the associated side effects.

The approach, which uses a nanostructure fabrication device, can manipulate the chirality of drug molecules by controlling the direction a substrate is rotated within the device, thus eliminating the possible side effects that can arise when people take drugs containing molecules with the incorrect chirality.

Published Nature Chemistry, the research findings pave the way towards the mass production of purer, cheaper and safer drugs that can be made in a scalable and more environmentally-friendly way.

Many chemical molecules have two configurations, or chiral versions, that are mirror images of each other. While sharing the same molecular formula, the two chiral versions have different arrangements of their constituent atoms in space. The two versions of the molecules are characterized by left-handed and right-handed chiral configurations like human hands. Molecules with "left-handed" and "right-handed" chirality can have totally different biochemical effects.

More than half of the therapeutic drugs are made up of equal amounts of left-handed and right-handed chiral molecules; one can cure specific diseases, but the other may have adverse effects. Separating and producing molecules with only the chiral arrangement responsible for the therapeutic effects can help to produce drugs with improved safety and efficacy.

Existing technologies for producing single-enantiomer drugs are composed of complicated procedures are expensive and environmentally unfriendly.

Dr Jeffery Huang Zhifeng, Associate Professor in the Department of Physics at HKBU, and his research team devised a novel approach to manipulating molecular chirality through macro-scale control in collaboration with Sichuan University, Guangxi Medical University and the Southern University of Science and Technology.

"Our success in manipulating molecular chirality through macroscopic engineering allows the convenient synthesis of drugs in single-enantiomer forms with only left- or right-handedness. Hence, it will help get rid of the adverse, sometimes fatal, side effects of many therapeutic drugs," said Dr Huang.

The use of chiral ligands in the conventional method of asymmetric synthesis is inevitable, and it may cause pollution to enter the environment. In this novel approach, however, the metal nanohelices can be used repeatedly to produce single-enantiomer drugs without the use of chiral ligands. As a result, it paves the way towards the mass production of affordable therapeutic drugs that are made in a scalable manner with recyclable materials.

Read More

Related Content